Abstract
Using Weil descent, we give bounds for the number of rational points on two families of curves over finite fields with a large abelian group of automorphisms: Artin–Schreier curves of the form yq−y=f(x) with f∈Fqr[x], on which the additive group Fq acts, and Kummer curves of the form yq−1e=f(x), which have an action of the multiplicative group Fq⋆. In both cases we can remove a q factor from the Weil bound when q is sufficiently large.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.