Abstract

A spanning tree of a properly edge-colored complete graph, Kn, is rainbow provided that each of its edges receives a distinct color. In 1996, Brualdi and Hollingsworth conjectured that if K2m is properly (2m−1)-edge-colored, then the edges of K2m can be partitioned into m rainbow spanning trees except when m=2. By means of an explicit, constructive approach, in this paper we construct ⌊6m+9∕3⌋ mutually edge-disjoint rainbow spanning trees for any positive value of m. Not only are the rainbow trees produced, but also some structure of each rainbow spanning tree is determined in the process. This improves upon best constructive result to date in the literature which produces exactly three rainbow trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.