Abstract

Abstract In this article, we derive lower bounds for the number of distinct prime divisors of families of non-zero Fourier coefficients of non-CM primitive cusp forms and more generally of non-CM primitive Hilbert cusp forms. In particular, for the Ramanujan Δ-function, we show that, for any ϵ > 0 \epsilon>0 , there exist infinitely many natural numbers 𝑛 such that τ ⁢ ( p n ) \tau(p^{n}) has at least 2 ( 1 - ϵ ) ⁢ log ⁡ n log ⁡ log ⁡ n 2^{(1-\epsilon)\frac{\log n}{\log\log n}} distinct prime factors for almost all primes 𝑝. This improves and refines the existing bounds. We also study lower bounds for absolute norms of radicals of non-zero Fourier coefficients of modular forms alluded to above.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.