Abstract

We show new lower and upper bounds on the maximum number of maximal induced bipartite subgraphs of graphs with n vertices. We present an infinite family of graphs having 105n/10 ≈ 1.5926n; such subgraphs show an upper bound of O(12n/4) = O(1.8613n) and give an algorithm that finds all maximal induced bipartite subgraphs in time within a polynomial factor of this bound. This algorithm is used in the construction of algorithms for checking k-colorability of a graph. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 127–132, 2005

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.