Abstract
We give an explicit upper bound for the number of equivalence classes of binary forms with rational integral coefficients of given degree and given discriminant, and with given splitting field. Further, we give an explicit upper bound for the number of irreducible binary forms with rational integral coefficients with given invariant order. Our bounds depend on as few parameters as possible. For instance, we show that the number of equivalence classes of irreducible binary forms with rational integral coefficients of degree r with given invariant order has an upper bound depending only on r. We have proved more general results for binary forms with coefficients in the ring of S-integers of a number field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.