Abstract

Recently new algorithms appeared for updating the Burrows–Wheeler Transform or the suffix array, when the text they index is modified. These algorithms proceed by reordering entries and the number of such reordered entries may be as high as the length of the text. However, in practice, these algorithms are faster for updating the Burrows–Wheeler Transform or the suffix array than the fastest reconstruction algorithms.In this article we focus on the number of elements to be reordered for real-life texts. We show that this number is related to LCP values and that, on average, Lave entries are reordered, where Lave denotes the average LCP value, defined as the average length of the longest common prefix between two consecutive sorted suffixes. Since we know little about the LCP distribution for real-life texts, we conduct experiments on a corpus that consists of DNA sequences and natural language texts. The results show that apart from texts containing large repetitions, the average LCP value is close to the one expected on a random text.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.