Abstract
is called k-critical if it has chromatic number k, but every proper sub(hyper)graph of it is (k-1)-colourable. We prove that for sufficiently large k, every k-critical triangle-free graph on n vertices has at least (k-o(k))n edges. Furthermore, we show that every (k+1)-critical hypergraph on n vertices and without graph edges has at least edges. Both bounds differ from the best possible bounds by o(kn) even for graphs or hypergraphs of arbitrary girth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.