Abstract

A common practice in inventory systems with several customers requiring differentiated service levels is to group them into two or three classes, where a customer class is a group of customers with the same preset service level in terms of product availability. However, there is no evidence that grouping customers into two or three classes is optimal in terms of the ordering policy parameters. This paper studies the effect of the number of customer classes on the inventory level of a single-period inventory system with stochastic demand and individual service-level requirements from multiple customer classes. Using a Sample Average Approximation approach, we formulate computationally tractable multi-class service level models, under responsive and anticipative priority policies in cases of shortage, as mixed integer linear problems (MIPs). The effect of the number of classes on the inventory level is determined using a round-up aggregation scheme; i.e., given a sufficiently large initial number of classes, it is reduced by adding the lower service level classes to the next higher class. We analytically characterize the optimal inventory level under responsive and anticipative priority policies as a function of the initial number of classes and the number of classes grouped based on the round-up aggregation scheme. Under a responsive priority policy, we show that there is an optimal number of classes, while under an anticipative priority policy, the optimal number of classes is equal to the initial number of classes. The effect of free-riders resulting from the round-up aggregation scheme on the optimal inventory level is studied through numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.