Abstract

In cochlear implants the incoming signal is analyzed by a bank of filters. Each filter is associated with an electrode to constitute a channel. The present research seeks to determine the number of channels needed for optimal vowel classification. Formant measurements of vowels produced by men and women [Hillenbrand et al., J. Acoust. Soc. Am. 97, 3099–3111 (1995)] were converted to channel assignments. The number of channels varied from 4 to 20 over two frequency ranges (180–4000 and 180–6000 Hz) in equal bark steps. Channel assignments were submitted to linear discriminant analysis (LDA). Classification accuracy increased with the number of channels, ranging from 30% with 4 channels to 98% with 20 channels, both for the female voice. To determine asymptotic performance, LDA classification scores were plotted against the number of channels and fitted with quadratic equations. The number of channels at which no further improvement occurred was determined, averaging 19 across all conditions with little variation. This number of channels seems to resolve the frequency range spanned by the first three formants finely enough to maximize vowel classification. This resolution may not be achieved using six or eight channels as previously proposed. [Work supported by NIH.]

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call