Abstract
Abstract This paper is addressed to the study of the null controllability for integer order integro-differential equations. Unlike the known results for partial differential equations, we need to consider the equation involving a $\beta -$power of the Laplace operator $(-\varDelta )^\beta $ and an integral term. The key point is to construct a suitable state space of the controlled system at the final time. We first discuss a class of hyperbolic integro-differential equation. We prove that the controlled system is null controllable by an Ingham-type estimate. Also, the controllability time is given. On the other hand, by reduction to absurdity, we deduce that the null controllability property fails for a class of parabolic integro-differential equation with $\beta \in \mathbb{N}^+$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IMA Journal of Mathematical Control and Information
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.