Abstract

Similarities and differences between the phenomena of kink banding in compressed layered structures and shear banding in compressed granular media are explored. Simple models are introduced for both, and the focus is directed onto how they can nucleate from the perfectly flat state. A convincing scenario is found for each in which a mode develops from an initial bifurcation into a periodic state, followed by rapid localization under falling load, while retaining decaying but wavy tails. At a certain lower critical load, the tails lose their waviness, and the expected form of the kink or shear band appears. In each case, good numerical evidence is provided for the existence of this form of behaviour. A second potential instability for the layered case is also explored, linked to the appearance of a critical force dipole that overcomes bending stiffness locally at some point along the length. This mode, which should appear with non-wavy decaying tails at the lower of the two critical loads mentioned earlier, proves somewhat elusive. Evidence is found for its existence in the linearized approximation to the layered model, but the search for numerical solutions to the underlying nonlinear equation is hindered by a shortage of suitable boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.