Abstract

AbstractLet denote a molecular graph of linear [n] phenylene with n hexagons and n squares, and let the Möbius phenylene chain be the graph obtained from the by identifying the opposite lateral edges in reversed way. Utilizing the decomposition theorem of the normalized Laplacian characteristic polynomial, we study the normalized Laplacian spectrum of , which consists of the eigenvalues of two symmetric matrices ℒ R and ℒ Q of order 3n. By investigating the relationship between the roots and coefficients of the characteristic polynomials of the two matrices above, we obtain an explicit closed‐form formula of the multiplicative degree‐Kirchhoff index as well as the number of spanning trees of . Furthermore, we determine the limited value for the quotient of the multiplicative degree‐Kirchhoff index and the Gutman index of .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.