Abstract
Thirty-three fast radio bursts (FRBs) had been detected by March 2018. Although the sample size is still limited, meaningful statistical studies can already be carried out. The normalised luminosity function places important constraints on the intrinsic power output, sheds light on the origin(s) of FRBs, and can guide future observations. In this paper, we measure the normalised luminosity function of FRBs. Using Bayesian statistics, we can naturally account for a variety of factors such as receiver noise temperature, bandwidth, and source selection criteria. We can also include astronomical systematics, such as host galaxy dispersion measure, FRB local dispersion measure, galaxy evolution, geometric projection effects, and Galactic halo contribution. Assuming a Schechter luminosity function, we show that the isotropic luminosities of FRBs have a power-law distribution that covers approximately three orders of magnitude, with a power-law index ranging from $-1.8$ to $-1.2$ and a cut off $\sim 2\times 10^{44}\,\rm erg\,s^{-1}$. By using different galaxy models and well-established Bayesian marginalisation techniques, we show that our conclusions are robust against unknowns, such as the electron densities in the Milky Way halo and the FRB environment, host galaxy morphology, and telescope beam response.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.