Abstract
We have analyzed the interplay of ITG turbulence and zonal flows as derived by the reductive perturbation method. Not surprisingly, the overall transport level depends strongly on the physics description of ITG modes. In particular, the fluid resonance turns out to play a dominant role for the excitation of zonal flows. This is the mechanism recently found to lead to the L-H transition and to the nonlinear Dimits upshift in transport code simulations. It is important that we have here taken the nonlinear temperature dynamics from the Reynolds stress as the convected diamagnetic flow. This has turned out to be the most relevant effect as found in transport simulations of the L-H transition, internal transport barriers, and Dimits shift.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.