Abstract

Recent studies in multiobjective particle swarm optimization (PSO) have the tendency to employ Pareto-based technique, which has a certain effect. However, they will encounter difficulties in their scalability upon many-objective optimization problems (MaOPs) due to the poor discriminability of Pareto optimality, which will affect the selection of leaders, thereby deteriorating the effectiveness of the algorithm. This paper presents a new scheme of discriminating the solutions in objective space. Based on the properties of Pareto optimality, we propose the dominant difference of a solution, which can demonstrate its dominance in every dimension. By investigating the norm of dominant difference among the entire population, the discriminability between the candidates that are difficult to obtain in the objective space is obtained indirectly. By integrating it into PSO, we gained a novel algorithm named many-objective PSO based on the norm of dominant difference (MOPSO/DD) for dealing with MaOPs. Moreover, we design a Lp -norm-based density estimator which makes MOPSO/DD not only have good convergence and diversity but also have lower complexity. Experiments on benchmark problems demonstrate that our proposal is competitive with respect to the state-of-the-art MOPSOs and multiobjective evolutionary algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.