Abstract

In this paper, we consider a one-dimensional diffusion process with jumps driven by a Hawkes process. We are interested in the estimations of the volatility function and of the jump function from discrete high-frequency observations in a long time horizon which remained an open question until now. First, we propose to estimate the volatility coefficient. For that, we introduce a truncation function in our estimation procedure that allows us to take into account the jumps of the process and estimate the volatility function on a linear subspace of L2(A) where A is a compact interval of R. We obtain a bound for the empirical risk of the volatility estimator, ensuring its consistency, and then we study an adaptive estimator w.r.t. the regularity. Then, we define an estimator of a sum between the volatility and the jump coefficient modified with the conditional expectation of the intensity of the jumps. We also establish a bound for the empirical risk for the non-adaptive estimators of this sum, the convergence rate up to the regularity of the true function, and an oracle inequality for the final adaptive estimator. Finally, we give a methodology to recover the jump function in some applications. We conduct a simulation study to measure our estimators’ accuracy in practice and discuss the possibility of recovering the jump function from our estimation procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.