Abstract

The nonlinear dynamics of the instability of a straight high-density relativistic electron beam under the conditions of the stimulated Cherenkov effect in a plasma waveguide is studied both analytically and numerically. It is shown that, for a beam of sufficiently high density such that the stabilizing factors are nonlinear frequency shifts and for a plasma described in a linear approximation, the basic equations have soliton-like solutions and the electron beam after saturation of the instability relaxes to its initial, weakly perturbed state, provided that only one harmonic of the plasma and the beam density is taken into account. The analytical solutions obtained here for this case correlate well with the numerical ones. A more general model that accounts for the generation of higher harmonics of the plasma and the beam density does not yield soliton-like solutions for the time evolution of the amplitudes of the plasma and beam waves. In such a model, the instability will be collective again: it can be described analytically (at least, up to the time at which it saturates) by using equations with cubic nonlinearities and the method of expansion of the electron trajectories and momenta.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call