Abstract
In this article, we study the dynamics of large‐scale motion in atmosphere and ocean governed by the 3D quasi‐geostrophic potential vorticity (QGPV) equation with a constant stratification. It is shown that for a Kolmogorov forcing on the first energy shell, there exist a family of exact solutions that are dissipative Rossby waves. The nonlinear stability of these exact solutions are analyzed based on the assumptions on the growth rate of the forcing. In the absence of forcing, we show the existence of selective decay states for the 3D QGPV equation. The selective decay states are the 3D Rossby waves traveling horizontally at a constant speed. All these results can be regarded as the expansion of that of the 2D QGPV system and in the case of 3D QGPV system with isotropic viscosity. Finally, we present a geometric foundation for the model as a general equation for nonequilibrium reversible‐irreversible coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.