Abstract
The nonlinear matrix equation Xp=A+MT(X#B)M, where p≥1 is a positive integer, M is an n×n nonsingular matrix, A is a positive semidefinite matrix and B is a positive definite matrix, is considered. We denote by C#D the geometric mean of positive definite matrices C and D. Based on the properties of the Thompson metric, we prove that this nonlinear matrix equation always has a unique positive definite solution and that the fixed-point iteration method can be efficiently employed to compute it. In addition, estimates of the positive definite solution and perturbation analysis are investigated. Numerical experiments are given to confirm the theoretical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.