Abstract

Small‐amplitude wave systems interacting nonlinearly can produce 0(1)amplitude streamwise vortex structures through the vortex–wave interaction mechanism described, for example, by [1–3]. The key feature of the interaction is that the spanwise velocity component of a vortex is small as compared to the streamwise component so that a nonlinear wave system driving the spanwise velocity component through Reynolds stresses can provoke a 0(1) response of the vortex. The wave system can correspond to either a Rayleigh or Tollmien–Schlichting wave disturbance, but previous work on the initiation of the process has been confined to Rayleigh waves (see, for example, [5, 6]). Here, we address the nonlinear initial value problem for Tollmien–Schlichting wave–vortex interactions in channel flows. The evolution of the disturbances is accounted for using the phase equation approach of [7]. We determine the circumstances, if any, under which the finite amplitude vortex–wave equilibrium states of [4] are generated. Our discussion of the nonlinear evolution of a wave system points toward a possible mechanism for the experimentally observed breakup of three‐dimensional instabilities into shorter streamwise scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.