Abstract
In this paper, using a second-order steady-state approach and a three-dimensional (3D) pulsating source distribution method derives the nonlinear hydrodynamic forces on a ship advancing in waves. The nonlinear hydrodynamic forces considered here consist of the mean lateral drifting force and the added resistance, which can be expressed as products of the ship-motion responses, the radiation potential, diffraction potential and the incident-wave potential. All related velocity potentials applied in the calculations are in 3D form. The Series 60 and Marine ship hulls are used for numerical calculations and the results are compared with existing experimental data and two-dimensional (2D) solutions. The comparisons show that the results obtained in the paper generally agree with experimental data well. It is also found that the nonlinear hydrodynamic forces obtained based on the present 3D source distribution methods are indeed improved in some calculations compared with the 2D method, especially for the mean lateral drifting force.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.