Abstract
This paper is concerned with the motion of an unbalanced dynamically symmetric sphere rolling without slipping on a plane in the presence of an external magnetic field. It is assumed that the sphere can consist completely or partially of dielectric, ferromagnetic, superconducting and crystalline materials. According to the existing phenomenological theory, the analysis of the sphere’s dynamics requires in this case taking into account the Lorentz torque, the Barnett-London effect and the Einstein-de Haas effect. Using this mathematical model, we have obtained conditions for the existence of integrals of motion which allow one to reduce integration of the equations of motion to a quadrature similar to the Lagrange quadrature for a heavy rigid body.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.