Abstract

We consider a one-dimensional discrete nonlinear Schrödinger (dNLS) model featuring interactions beyond nearest neighbors. We are interested in the existence (or nonexistence) of phase-shift discrete solitons, which correspond to four-site vortex solutions in the standard two-dimensional dNLS model (square lattice), of which this is a simpler variant. Due to the specific choice of lengths of the inter-site interactions, the vortex configurations considered present a degeneracy which causes the standard continuation techniques to be non-applicable.In the present one-dimensional case, the existence of a conserved quantity for the soliton profile (the so-called density current), together with a perturbative construction, leads to the nonexistence of any phase-shift discrete soliton which is at least C2 with respect to the small coupling ϵ, in the limit of vanishing ϵ. If we assume the solution to be only C0 in the same limit of ϵ, nonexistence is instead proved by studying the bifurcation equation of a Lyapunov–Schmidt reduction, expanded to suitably high orders. Specifically, we produce a nonexistence criterion whose efficiency we reveal in the cases of partial and full degeneracy of approximate solutions obtained via a leading order expansion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.