Abstract
AbstractWe study cut-elimination in first-order classical logic. We construct a sequence of polynomial-length proofs having a non-elementary number of different cut-free normal forms. These normal forms are different in a strong sense: they not only represent different Herbrand-disjunctions but also differ in their prepositional structure.This result illustrates that the constructive content of a proof in classical logic is not uniquely determined but rather depends on the chosen method for extracting it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.