Abstract

Given a brane tiling, that is a bipartite graph on a torus, we can associate with it a quiver potential and a quiver potential algebra. Under certain consistency conditions on a brane tiling, we prove a formula for the Donaldson–Thomas type invariants of the moduli space of framed cyclic modules over the corresponding quiver potential algebra. We relate this formula with the counting of perfect matchings of the periodic plane tiling corresponding to the brane tiling. We prove that the same consistency conditions imply that the quiver potential algebra is a 3-Calabi–Yau algebra. We also formulate a rationality conjecture for the generating functions of the Donaldson–Thomas type invariants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.