Abstract
We investigate whether Szabo’s metrizability theorem can be extended to Finsler spaces of indefinite signature. For smooth, positive definite Finsler metrics, this important theorem states that, if the metric is of Berwald type (i.e., its Chern–Rund connection defines an affine connection on the underlying manifold), then it is affinely equivalent to a Riemann space, meaning that its affine connection is the Levi–Civita connection of some Riemannian metric. We show for the first time that this result does not extend to general Finsler spacetimes. More precisely, we find a large class of Berwald spacetimes for which the Ricci tensor of the affine connection is not symmetric. The fundamental difference from positive definite Finsler spaces that makes such an asymmetry possible is the fact that generally, Finsler spacetimes satisfy certain smoothness properties only on a proper conic subset of the slit tangent bundle. Indeed, we prove that when the Finsler Lagrangian is smooth on the entire slit tangent bundle, the Ricci tensor must necessarily be symmetric. For large classes of Finsler spacetimes, however, the Berwald property does not imply that the affine structure is equivalent to the affine structure of a pseudo-Riemannian metric. Instead, the affine structure is that of a metric-affine geometry with vanishing torsion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.