Abstract
AbstractWe have investigated a data set of 19 h of simultaneous global conjugate auroral imaging from space. The data set consists of 10 sequences with durations from 1 to 5 h during active geomagnetic conditions (average AE ∼ 400 nT). We have identified 15 features (including two presented earlier) of auroral forms that appear mainly in one hemisphere, and we define this as non‐conjugate aurora. Three generator mechanisms has been suggested for producing interhemispheric currents and non‐conjugate aurora: (1) Hemispherical differences in solar wind dynamo efficiency due to interplanetary magnetic field (IMF) Bx and dipole tilt angle leading to asymmetric region 1 currents in the two polar hemispheres, (2) interhemispheric currents induced by the penetration of IMF By into the closed nightside magnetosphere, and (3) hemispheric differences in ionospheric conductivity controlled by the dipole tilt angle inducing interhemispheric currents on closed field‐lines. We want to find out if our observations are consistent with these mechanisms. Our analysis shows that five features were consistent with the IMF By penetration mechanism, seven features consistent with the solar wind dynamo mechanism, three features consistent with the conductivity mechanism, and two features could not be explained by any of the three suggested mechanisms. Because two features were consistent with two different mechanisms, the numbers add up to 17 although the total number of features is 15. The analysis also shows the expected correlation between the magnitude of the longitudinal shift of conjugate points, ΔMLT, and the occurrence of non‐conjugate aurora consistent with the By mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.