Abstract

Neuwirth asked if any non-trivial knot in the 3-sphere can be embedded in a closed surface so that the complement of the surface is a connected essential surface for the knot complement. In this paper, we examine some variations on this question and prove it for all knots up to 11 crossings except for two examples. We also establish the conjecture for all Montesinos knots and for all generalized arborescently alternating knots. For knot exteriors containing closed incompressible surfaces satisfying a simple homological condition, we establish that the knots satisfy the Neuwirth conjecture. If there is a proper degree one map from knot $K$ to knot $K'$ and $K'$ satisfies the Neuwirth conjecture then we prove the same is true for knot $K$. Algorithms are given to decide if a knot satisfies the various versions of the Neuwirth conjecture and also the related conjectures about whether all non-trivial knots have essential surfaces at integer boundary slopes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.