Abstract
Let (M, g) be a compact Riemannian manifold of dimension n ≥3, and let Γ be a nonempty closed subset of M. The negative case of the Singular Yamabe Problem concerns the existence and behavior of a complete metric g on M∖Γ that has constant negative scalar curvature and is pointwise conformally related to the smooth metric g. Previous results have shown that when Γ is a smooth submanifold (with or without boundary) of dimension d, there exists such a metric if and only if \(d > \frac{{n - 2}}{2}\). In this paper, we consider a more general class of closed sets and show the existence of a complete conformai metric ĝ with constant negative scalar curvature which depends on the dimension of the tangent cone to Γ at every point. Specifically, provided Γ admits a nice tangent cone at p, we show that when the dimension of the tangent cone to Γ at p is less than \(\frac{{n - 2}}{2}\) then there cannot exist a negative Singular Yamabe metric ĝ on M∖Γ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.