Abstract

The behaviour of fluid-particle acceleration in near-wall turbulent flows is investigated in numerically simulated turbulent channel flows at low to moderate Reynolds numbers, Reτ = 180~600). The acceleration is decomposed into pressure-gradient (irrotational) and viscous contributions (solenoidal acceleration) and the statistics of each component are analysed. In near-wall turbulent flows, the probability density function of acceleration is strongly dependent on the distance from the wall. Unexpectedly, the intermittency of acceleration is strongest in the viscous sublayer, where the acceleration flatness factor of O(100) is observed. It is shown that the centripetal acceleration around coherent vortical structures is an important source of the acceleration intermittency. We found sheet-like structures of strong solenoidal accelerations near the wall, which are associated with the background shear modified by the interaction between a streamwise vortex and the wall. We found that the acceleration Kolmogorov constant is a linear function of y+ in the log layer. The Reynolds number dependence of the acceleration statistics is investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.