Abstract

Teeth of three macropod species, M. giganteus, W. bicolor and P. concinna, have been studied using the techniques of light microscopy, scanning- and transmission-electron microscopy and hardness measurement. Light microscope observations showed that the teeth of these species had a translucent enamel region close to the dentine and an outer opaque enamel region at the tooth's surface. These regions were not related to the presence or absence of tubules which are a characteristic feature of marsupial enamel. Hardness tests showed that the opaque enamel was softer than the translucent enamel. Scanning electron microscope observations revealed that there was no correlation between any particular prism packing or orientation and the opaque and translucent enamel regions. Transmission electron microscope observations showed that the translucent enamel region consisted of well defined prisms and well packed, lath-like crystals, whereas the opaque enamel was disrupted by voids (which ranged in size from enlarged micropores to about 2 microns in diameter in extreme cases) between crystals and some randomly oriented, loosely packed crystals. This disruption within the opaque enamel region was more common at prism boundaries but pockets of disrupted enamel were also found within prisms and interprismatic regions. The opacity of the enamel was caused by scattering of light from the voids. The ultrastructure of the opaque enamel region indicated that this region was hypomineralized; hardness tests and polarized light microscope observations were consistent with these results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call