Abstract

Using the data from the Rossi X-Ray Timing Explorer satellite, we investigate the spectral evolution along a "Z" track and a "v" track on the hardness-intensity diagrams of the first transient Z source XTE J1701-462. The spectral analyses suggest that the inner disk radius depends on the mass accretion rate, in agreement with the model prediction, R_in \propto ((dM/dt)_disk)^{2/7}, for a radiation pressure dominated accretion disk interacting with the magnetosphere of a neutron star (NS). The changes in the disk mass accretion rate (dM/dt)_disk are responsible for the evolution of the "Z" or "v" track. The radiation pressure thickens the disk considerably, and also produces significant outflows. The NS surface magnetic field strength, derived from the interaction between the magnetosphere and the radiation pressure dominated accretion disk, is ~(1--3)X10^9 G, which is possibly between normal atoll and Z sources. A significant hard tail is detected in the horizontal branches and we discuss several possible origins of the hard tail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.