Abstract

Experimental data confirmed that if steel cyclic stress reduces to less than tensile yield stress values, i.e., in case of high-cycle fatigue, the mechanism of fracture changes from dislocation to vacancy one. The authors based their findings on the fact that steel density determined by the method of liquid displacement is less than that of steel in both initial conditions and after fracture under the cyclic loads exceeding tensile yield stress values. In the latter case steel hardness increases, whereas the specimens fractured under the cyclic stresses less than their tensile yield stress values show no change in hardness. It means that in such a case metal fractures without strain hardening, i.e., undergoes brittle fracturing developing by vacancy mechanism rather than by dislocation one. As a result, such steel obtains the structure and properties similar to those appearing after its exposure to radiation, i.e., friability and brittleness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call