Abstract

Rate acceleration of the addition of benzyl azide to an electron deficient olefin is characterized using in situ IR spectroscopy. Under strictly anhydrous conditions and at depressed temperature (-20 degrees C), a triazoline intermediate is selectively formed. The stability of this protonated triazoline intermediate at -20 degrees C is indefinite, but warming of the reaction mixture to 0 degrees C or above results in its conversion to the beta-amino oxazolidine dione observed under conditions used in our earlier report. As an alternative to warming, the same conversion can be effected by the addition of a single equivalent of water. Our experiments collectively demonstrate the metastability of the protonated triazoline intermediate and secondary catalysis of triazolinium ring fragmentation by water. This behavior is attributed to the ability of water to transfer a proton from N3 to N1 of the triazoline, thereby allowing ring fragmentation and nitrogen expulsion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.