Abstract

[1] Earthward propagating dipolarization fronts, interpreted as thin, vertical current sheets that separate plasmas of different origins in the Earth's magnetotail, are embedded within flow bursts, often near the leading edge of bursty bulk flows. Observations have also shown that bursty bulk flow onset typically precedes dipolarization front arrival by ∼1 min. Ion distribution functions reveal that earthward flows in advance of front arrival are often caused by the appearance of a new ion population atop a preexisting plasma sheet component. Particle simulations suggest that this second population, which contributes most to the plasma velocity, is composed of ions that have been reflected at and accelerated by the approaching front. We propose that in the presence of a finite upstream Bz field, the reflected ions would be confined in a region with a size comparable to the ion thermal gyroradius over the upstream Bz. THEMIS observations confirm that the measured time difference δt between the appearance of earthward plasma flows and the dipolarization front arrival is consistent with the predicted size of the ion accessibility region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.