Abstract

The formation of lithium-rich precipitate particles, known as δ′ phase, is responsible for the particularly desirable mechanical properties which make aluminium-lithium alloys interesting for different industrial applications. The structure and the kinetics of the phase separation process are conveniently studied by small-angle X-ray scattering, though uncertainties remain on the actual shape of the phase diagram of the system, particularly in the region of interest. In this paper are reported small-angle X-ray scattering measurements on a commercial AlLi (8.49% Li atoms) both in the region of formation of the precipitate and during its successive growth. Modelling of the experimental full scattering curve has allowed derivation of several important structural parameters, including the composition of the separating phase. It was found that, even during the early stages of formation, the Li content of the precipitate was ∼ 21% Li atoms, similar to that found by other methods at the end of precipitation, and remained constant throughout. It was concluded that precipitation was initiated by nucleation rather than by spinodal decomposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.