Abstract
We discuss electronic properties of the molecular systems with the short distance Fe–O unit, which are presumably formed as reaction intermediates during oxygen activation by non-heme enzymes. By performing an analysis of electronic densities in terms of multiconfigurational expansions of wavefunctions with localized orbitals the electronic properties of the Fe–O moiety in two model complexes are compared. The first one refers to the enzymatic intermediate, and the second biomimetic complex models a synthetic compound [Fe(O)(TMC)(NCCH3)](OTf)2 with a terminal Fe–O unit, which is experimentally characterized as the Fe(IV)=O species. We show that the orbital pictures of the FeO unit in both model complexes share common features. According to these simulations, the non-heme enzymatic intermediates may be assigned to the systems with the oxidation state of Fe between III and IV, as recently proposed for the TauD enzyme in experimental spectroscopic studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.