Abstract

Recently, ionic liquid gating has been used to modulate the charge carrier properties of metal oxides. The mechanism behind it, however, is still a matter of debate. In this paper, we report experiments on doped and undoped Nd2CuO4. We find major resistance drops of the bilayer coupled to observations of the presence of a considerable Faradeic component in the gate current and of the appearance of charge transfer peaks in the cyclic voltammetry data. This leads us to propose a mechanism of gating based on irreversible electrochemical reactions, likely due to trace amounts of contaminations present in the ionic liquid. This work is therefore in line with previous reports confirming the presence of irreversible electrochemistry in ionic liquid gated electron- doped cuprates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.