Abstract
Large-scale plasma oscillations (so-called MHD oscillations) observed at the T-10 tokamak are investigated. The central electron cyclotron heating was used to enhance oscillations at the m/n = 1/1 mode with the goal of determining the internal characteristics of the process. The spatially resolved electron cyclotron emission diagnostics allowed analyzing the propagation characteristics of plasma perturbations. The experiments have revealed that excitation of oscillations in a particular mode occur simultaneously in the entire area located within the corresponding rational magnetic surface. The propagation of plasma perturbations along the torus is found to be inhomogeneous. The electron cyclotron emission diagnostics allowed finding eigen (resonance) frequencies of plasma oscillations from the parameters of their inhomogeneous propagation in the plasma core and comparing them with spectra of oscillations of the magnetic field induced by the plasma current in the edge plasma, which were recorded by magnetic probes. It is established that the frequencies of eigenmodes are independent of the electron temperature, plasma density, and auxiliary heating power. Even spatial harmonics of the principal magnetic surface are observed under strong excitation of oscillations. The rational magnetic surfaces that determine oscillation harmonics retain their position during the entire steady-state phase of the total plasma current in spite of the strong sharpening of the temperature profile due to central heating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.