Abstract

Summary. It is well known that the time of occurrence of the minimum in the horizontal component of the Earth's magnetic field (Hmin) on quiet days at a mid-latitude station on the poleward side of the Sq focus shows considerable variability from day to day. This variability has previously been discussed in terms of the incidence of so-called ‘abnormal quiet days’(AQD), arbitrarily defined for the station Hartland as quiet days when Hmin occurred outside an interval of ± 2½ hr centred on the most common time of 1130 LT. AQDs have some interesting properties, which have been documented, but their precise nature and cause have not been elucidated. In this paper we report the results of a study of AQDs as identified at Hartland using a chain of Northern hemisphere stations situated approximately along the 0° longitude meridian and extending on both sides of the Sq focus. It is found that there are two effects on AQDs: (i) a northward component field varying in LT is superposed at all latitudes throughout the day, so reducing the amplitude of the normal Sq(H) variation at stations poleward of the focus and increasing it on the equatorward side, (ii) a southward perturbation field, of most probable magnitude 6.0 nT for the period studied, is imposed for about 4 hr at a fixed UT at all latitudes, so constituting an ‘AQD event’ which can lead to the occurrence of Hmin at an anomalous local time for a station poleward of the focus. It is shown that the AQD event may be of large geographical extent and that it is related to the interplanetary magnetic field. All the main properties of AQD occurrences are explained, and it is suggested that much of the day-to-day variability in the amplitude and phase of the normal Sq(H) variation probably also arises from the occurrence of AQD events at times close to the diurnal turning points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.