Abstract

Many carbonaceous chondrites contain discrete olivine fragments that have been considered to be primitive material, i.e. direct condensates from the solar nebula or pre-solar system material. Olivine occurring in chondrules and as isolated grains in C3(0) chondrites has been characterized chemically and petrographically. Type I chondrules contain homogeneous forsterite grains that exhibit a negative correlation between FeO and CaO. Type II chondrules contain zoned fayalite olivines in which FeO is positively correlated with CaO and MnO. The isolated olivines in C3(0) chondrites form two compositional populations identical to olivines in the two types of porphyritic olivine chondrules in the same meteorites. Isolated olivines contain trapped melt inclusions similar in composition to glassy mesostasis between olivines in chondrules. Such glasses can be produced by fractional crystallization of olivine and minor spinel in the parent chondrule melts if plagioclase does not nucleate. The isolated olivine grains are apparently clastic fragments of chondrules. Some similarities between olivines in C3(0), C2, and Cl chondrites may suggest that olivine grains in all these meteorites crystallized from chondrule melts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call