Abstract
We show that the statement analogous to the Mumford–Tate conjecture for Abelian varieties holds for 1-motives on unipotent parts. This is done by comparing the unipotent part of the associated Hodge group and the unipotent part of the image of the absolute Galois group with the unipotent part of the motivic fundamental group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.