Abstract

In this letter, we discuss the multivariate Laplace probability model in the context of a normal variance mixture model. We briefly review the derivation of the probability density function (pdf) and discuss a few important properties. We then present two methods for estimating its parameters from data and include an example of usage, where we apply the model to represent the statistics of the discrete Fourier transform coefficients of a speech signal. Since the pdf is given in closed form, and the model parameters can be easily obtained, this distribution may be useful for representing multivariate, sparsely distributed data, with mutually dependent components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.