Abstract

In this paper we study a multi-channel queueing model of type with N waiting places and a non-recurrent input flow dependent on queue length at the time of each arrival. The queue length is treated as a basic process. We first determine explicitly the limit distribution of the embedded Markov chain. Then, by introducing an auxiliary Markov process, we find a simple relationship between the limiting distribution of the Markov chain and the limiting distribution of the original process with continuous time parameter. Here we simultaneously combine two methods: solving the corresponding Kolmogorov system of the differential equations, and using an approach based on the theory of semi-regenerative processes. Among various applications of multi-channel queues with state-dependent input stream, we consider a closed single-server system with reserve replacement and state-dependent service, which turns out to be dual (in a certain sense) in relation to our model; an optimization problem is also solved, and an interpretation by means of tandem systems is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.