Abstract

We consider a class of subnormal operator tuples \(M_z\) consisting of multiplications by coordinate functions on a class of reproducing kernel Hilbert spaces associated with certain bounded domains \(\Omega \) in \({\mathbb {C}}^m\), with the closure \({{\bar{\Omega }}}\) of \(\Omega \) being the Taylor spectrum of \(M_z\) and the topological boundary \(\partial \Omega \) of \(\Omega \) being the Taylor essential spectrum of \(M_z\). If T is a subnormal operator tuple quasisimilar to \(M_z\), then we show that the Taylor spectrum of T is \({{\bar{\Omega }}}\) provided \({{\bar{\Omega }}}\) is polynomially convex and provided \(\Omega \) is either strictly pseudoconvex with \(C^2\) boundary or is starlike, and that the Taylor essential spectrum of T is \(\partial \Omega \) provided \(\Omega \) satisfies the Gleason property as well. This generalizes some previous work of the first-named author in the context of the unit ball and the unit polydisk. The relevant theory is then applied to the multiplication tuples on the Hardy and Bergman spaces of complex ellipsoids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call