Abstract

Measurements by the Galileo probe in Jupiter's deep atmosphere support the possibility that the mean zonal multiple-jet flows in Jupiter's atmosphere are deep rooted. As a consequence of Jupiter's high rotation rate, the primary dynamics of the zonal flows must be geostrophic, i.e., the dynamic balance is largely between the Coriolis and pressure forces. This paper describes a new analytical theory for the generation of zonal multiple-jet flows on the basis of the nonlinear interaction of slowly traveling, nearly two-dimensional and non-axisymmetric geostrophic waves. An explicit analytical expression for the geostrophic waves is obtained as the leading-order solution of the weakly nonlinear problem. In the high-order problem taking into account of nonlinear effects, an analytical expression for an alternating multiple-jet flow is derived. Implications of the theory for Jupiter and other planets are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call