Abstract

Preparative temperature rising elution fractionation (prepTREF) is the standard technique for the preparative fractionation of polyolefins according to crystallisability. For olefin copolymers such as linear low-density polyethylene (LLDPE), it was believed that the TREF elution temperature correlates directly with the copolymer composition. For copolymers having different bulk comonomer contents, the prepTREF fractions of different samples collected at a given temperature were assumed to have the same chemical composition. It was acknowledged quite early that co-crystallisation effects may disturb TREF fractionation and fractions are obtained that are not completely homogeneous. This, however, has not been investigated quantitatively so far. The fundamental statement of prepTREF is challenged for the first time quantitatively using advanced analytical techniques including high-temperature high-performance liquid chromatography (HPLC). Ethylene-1-octene copolymers having bulk comonomer contents ranging from 0.3 to 6.4mol% were fractionated by prepTREF, and the fractions were analysed by high-temperature size exclusion chromatography, crystallisation analysis fractionation, differential scanning calorimetry and high-temperature HPLC. All analytical results prove that the TREF fractions collected from different samples at the same elution temperature have different chemical compositions. The chemical compositions of the fractions correlate with the compositions of the bulk samples in that the comonomer contents of similar TREF fractions increase with an increase of the comonomer content of the bulk samples. These results are in clear contrast to the previous assumption that the TREF fraction composition is independent of the bulk copolymer composition for a given copolymer type. Graphical abstract Advanced analysis of LLDPE by combination of HT-HPLC, DSC and CRYSTAF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call