Abstract
Let K be a maximal unramified extension of a nonarchimedean local field with arbitrary residual characteristic p. Let G be a reductive group over K which splits over a tamely ramified extension of K. We show that the associated Moy-Prasad filtration representations are in a certain sense independent of p. We also establish descriptions of these representations in terms of explicit Weyl modules and as representations occurring in a generalized Vinberg-Levy theory. As an application, we use these results to provide necessary and sufficient conditions for the existence of stable vectors in Moy-Prasad filtration representations, which extend earlier results by Reeder and Yu (which required p to be large) and by Romano and the author (which required G to be absolutely simple and split). This yields new supercuspidal representations. We also treat reductive groups G that are not necessarily split over a tamely ramified field extension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.