Abstract
We consider the motion of a near-autonomous, time-periodic two-degree-of- freedom Hamiltonian system in the vicinity of trivial equilibrium. It is assumed that the system depends on three parameters, one of which is small, and when it is zero, the system is autonomous. Suppose that in the autonomous case for a set of two other parameters, both frequencies of small linear oscillations of the system in the vicinity of the equilibrium are equal to zero, and the rank of the coefficient matrix of the linearized equations of perturbed motion is three, two, or one. We study the structure of the regions of stability and instability of the trivial equilibrium of the system in the vicinity of the resonant point of a three-dimensional parameter space, as well as the existence, number and stability (in a linear approximation) of periodic motions of the system that are analytic in integer or fractional powers of the small parameter. As an application, periodic motions of a dynamically symmetric satellite (solid) with respect to the center of mass are obtained in the vicinity of its stationary rotation (cylindrical precession) in a weakly elliptical orbit in the case of two zero frequencies under study, and their instability is proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.