Abstract

The motion of an artificial Earth satellite with constant absolute value of the acceleration is considered. This requirement is equivalent to imposing a second-order nonlinear nonholonomic constraint or a third-order linear nonholonomic constraint. Two theories of motion of nonholonomic systems with high-order constraints are used for solving this problem. According to the first theory, a consistent system of differential equations is constructed with respect to the generalized coordinates and the Lagrange multipliers; the second theory is based on the application of the generalized Gauss principle. The results are different, although the constraints are satisfied in both theories. It turns out that infinitely many solutions can be built, but using these theories one can find two specific solutions. The question of the difference of these two solutions from the set of all other possible solutions is raised. We also simplify the previously obtained differential equations. The transition to dimensionless variables is made. Three parameters of motion prior to imposition of the constraint are single out, which control the motion after the application of the constraint. The solutions obtained from these theories of motion of nonholonomic systems are compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.